herkömmliches Higgsprogramm

Das neue FeynHiggs
SUSY Prediction for the LHC

Sven Heinemeyer, IFCA (CSIC, Santander)

Boston, 06/2009

based on collaboration with
O. Buchmüller, R. Cavanaugh, A. de Roeck, J. Ellis, G. Isidori, K. Olive, P. Paradisi, F. Ronga, G. Weiglein

1. Introduction and motivation
2. The MasterCode
3. Models & Methods
4. Predictions for the LHC
5. Conclusions
1. Introduction

The LHC is coming . . .
first collisions by the end of this year?

The ILC is still coming . . .
. . . a bit later than anticipated

⇒ New Physics is certainly around the corner

⇒ Time to get ready
The big question:
Which Lagrangian describes the world?

My guess:
It is a supersymmetric one
⇒ concentrate on the MSSM from now on

(other people ⇒ other guesses ⇒ other priorities . . .)
The big question:
Which Lagrangian describes the world?

My guess:
It is a supersymmetric one
⇒ concentrate on the MSSM from now on

(other people ⇒ other guesses ⇒ other priorities . . .)

⇒ is there any possibility to know what to expect?
The big question:
Which Lagrangian describes the world?

My guess:
It is a supersymmetric one
⇒ concentrate on the MSSM from now on

(other people ⇒ other guesses ⇒ other priorities . . .)

⇒ is there any possibility to know what to expect?

Let’s see . . .
The Minimal Supersymmetric Standard Model (MSSM)

Superpartners for Standard Model particles

\[
\begin{bmatrix}
 u, d, c, s, t, b \\
 \tilde{u}, \tilde{d}, \tilde{c}, \tilde{s}, \tilde{t}, \tilde{b}
\end{bmatrix}_{L,R} \quad
\begin{bmatrix}
 e, \mu, \tau \\
 \tilde{e}, \tilde{\mu}, \tilde{\tau}
\end{bmatrix}_{L,R} \quad
\begin{bmatrix}
 \nu_e, \mu, \tau \\
 \tilde{\nu}_e, \mu, \tau
\end{bmatrix}_{L}
\]

Spin \(\frac{1}{2} \)

\[
\begin{bmatrix}
 g, W^\pm, H^\pm \\
 \tilde{g}, \tilde{\chi}^{\pm}_{1,2} \\
 \tilde{\chi}^0_{1,2,3,4}
\end{bmatrix}
\]

Spin 1 / Spin 0

Enlarged Higgs sector: Two Higgs doublets

Problem in the MSSM: many scales

Problem in the MSSM: complex phases (← neglected here)
How to make a prediction?

Comparison of precision observables with theory:

<table>
<thead>
<tr>
<th>Precision data:</th>
<th>Theory:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_W, \sin^2 \theta_{\text{eff}}, a_\mu, \ldots$</td>
<td>SM, MSSM, \ldots</td>
</tr>
</tbody>
</table>

\Downarrow

Test of theory at quantum level: Sensitivity to loop corrections

⇒ Information about unknown parameters

Very high accuracy of measurements and theoretical predictions needed
Example: Prediction for M_W in the SM and the MSSM:

MSSM band:
scan over SUSY masses

overlap:
SM is MSSM-like
MSSM is SM-like

SM band:
variation of M^SM_H
Example: Prediction for M_W in the SM and the MSSM:

![Graph showing the relationship between M_W, m_t, and possible experimental errors 68% CL.]

- **MSSM band:**
 - scan over SUSY masses
 - overlap:
 - SM is MSSM-like
 - MSSM is SM-like

- **SM band:**
 - variation of M_H^{SM}

Sven Heinemeyer, BSM/LHC ’09 (pre-SUSY 09), 06/03/2009
Example: Prediction for M_W in the SM and the MSSM:

[Diagram showing M_W vs m_t with experimental errors: LEP2/Tevatron (today), 68% CL, 95% CL. MSSM band: scan over SUSY masses. Overlap: SM is MSSM-like. SM band: variation of M_H^{SM}.

Heinemeyer, Hollik, Stockinger, Weber, Weiglein '09]
2. The MasterCode

⇒ collaborative effort of theorists and experimentalists
[Buchmüller, Cavanaugh, De Roeck, Ellis, Flächer, SH, Isidori, Olive, Paradisi, Ronga, Weiglein]

Über-code for the combination of different tools:

– tools are included as subroutines
– compatibility ensured by collaboration of authors of “MasterCode” and authors of “sub tools” /SLHA(2)
– one “MasterCode” for one model . . .

⇒ evaluate observables of one parameter point consistently with various tools
⇒ consistent evaluation with the best codes available
Status of the “MasterCode”:

- one model: (MFV) MSSM

- tools included:
 - B-physics observables [SuFla]
 - more B-physics observables [SuperIso]
 - Higgs related observables, $(g - 2)_{\mu}$ [FeynHiggs]
 - Electroweak precision observables [FeynWZ (SUSYPope)]
 - Dark Matter observables [MicrOMEGAs, DarkSUSY]
 - for GUT scale models: RGE running [SoftSusy]

- added: χ^2 analysis code
 (→ similar directions as SFitter, Fittino)

- currently being implemented:
 - Higgs constraints (for χ^2 contributions . . .) [HiggsBounds]
 → see S.H.’s talk at SUSY 09

- planned: inclusion of more tools / more models
Example: \(B/K \) physics observables in the MasterCode

1. \(\text{BR}(b \to s\gamma) \)
2. \(\text{BR}(B_s \to \mu^+\mu^-) \)
3. \(\Delta M_s \)
4. \(R(\Delta M_s/\Delta M_d) \)
5. \(\text{BR}(B_u \to \tau\nu_{\tau}) \)
6. \(\text{BR}(B \to X_x\ell^+\ell^-) \)
7. \(R(K \to \ell\nu) \)
8. \(R(\Delta M_K) \)

⇒ largest impact: (1) and (2)
3. Models & methods

Indirect constraints on M_{SUSY} from existing data?

- Electroweak precision observables (EWPO) ?
- B physics observables (BPO) ?
- Cold dark matter (CDM) ?

⇒ combination of EWPO, BPO, CDM ?
3. Models & methods

Indirect constraints on M_{SUSY} from existing data?

- Electroweak precision observables (EWPO)?
- B physics observables (BPO)?
- Cold dark matter (CDM)?

⇒ combination of EWPO, BPO, CDM?

EWPO M_W: information on $m_{\tilde{t}}, m_{\tilde{b}}$ or M_A, $\tan \beta$ or . . .

EWPO $(g-2)_\mu$: information on $\tan \beta$ and/or m_{χ^0}, m_{χ^\pm} and/or $m_{\tilde{\mu}}, m_{\tilde{\nu}_\mu}$

BPO BR($b \to s\gamma$): information on $\tan \beta$ and/or M_{H^\pm} and/or $m_{\tilde{t}}, m_{\tilde{\chi}^\pm}$

CDM (LSP gives CDM): information on m_{χ_1} and $m_{\tilde{\tau}}$ or M_A or . . .
3. Models & methods

Indirect constraints on M_{SUSY} from existing data?

- Electroweak precision observables (EWPO) ?
- B physics observables (BPO) ?
- Cold dark matter (CDM) ?

⇒ combination of EWPO, BPO, CDM ?

EWPO M_W : information on $m_{\tilde{t}}, m_{\tilde{b}}$ or M_A, $\tan \beta$ or . . .

EWPO $(g-2)_\mu$: information on $\tan \beta$ and/or $m_{\tilde{\chi}^0}, m_{\tilde{\chi}^\pm}$ and/or $m_{\tilde{\mu}}, m_{\tilde{\nu}_\mu}$

BPO $\text{BR}(b \rightarrow s\gamma)$: information on $\tan \beta$ and/or M_{H^\pm} and/or $m_{\tilde{t}}, m_{\tilde{\chi}^\pm}$

CDM (LSP gives CDM) : information on $m_{\tilde{\chi}^0_1}$ and $m_{\tilde{\tau}}$ or M_A or . . .

⇒ combination makes only sense if all parameters are connected!

⇒ GUT based models, . . .
Existing analyses for GUT based models: (involving precision observables)

CMSSM/mSUGRA:

[E. Baltz, P. Gondolo '04]

[R. Ruiz de Austri, R. Trotta and L. Roszkowski '06, '07]

[B. Allanach, C. Lester and A. Weber '06, '07]

[F. Feroz, M. Hobson, L. Roszkowski and R. Ruiz de Austri, R. Trotta '08]

[O. Buchmueller et al. '07] [O. Buchmueller et al. '08]

NUHM (Non-Universal Higgs Mass model):

[J. Ellis, S.H., K. Olive, G. Weiglein '06]

[J. Ellis, T. Hahn, S.H., K. Olive, G. Weiglein '07]

VCMSSM (Very Constrained MSSM):

[J. Ellis, S.H., K. Olive, G. Weiglein '06]

[L. Roszkowski, R. Ruiz de Austri, R. Trotta, Y. Tsai, T. Varley '09]

mSUGRA (GDM) (Gravitino Dark Matter): [J. Ellis, S.H., K. Olive, G. Weiglein '06]

CMSSM, mGMSB, mAMSB: [S.H., X. Miao, S. Su, G. Weiglein '08]

Finite Unified Theories: [S.H., M. Mondragón, G. Zoupanos '07]

→ Myriam Mondragon's talk at SUSY 09
The models: 1.) CMSSM (or mSUGRA):

⇒ Scenario characterized by

\[m_0, m_{1/2}, A_0, \tan \beta, \text{sign} \mu \]

\(m_0 \) : universal scalar mass parameter
\(m_{1/2} \) : universal gaugino mass parameter
\(A_0 \) : universal trilinear coupling
\(\tan \beta \) : ratio of Higgs vacuum expectation values
\(\text{sign}(\mu) \) : sign of supersymmetric Higgs parameter

⇒ particle spectra from renormalization group running to weak scale
The models: 2.) NUHM1: (Non-universal Higgs mass model)

Assumption: no unification of scalar fermion and scalar Higgs parameter at the GUT scale

⇒ effectively M_A or μ as free parameters at the EW scale

⇒ besides the CMSSM parameters

M_A or μ

Further extension: NUHM2:
Assumption: no unification of the Higgs parameters at the GUT scale

⇒ effectively M_A and μ as free parameters at the EW scale

⇒ besides the CMSSM parameters

M_A and μ
Different methods:

1.) Scanning:
- 3-dim scans (possibly with CDM fixing one dimension)
- multi-dim scans
 [O. Buchmueller et al. '07] [S.H., X. Miao, S. Su, G. Weiglein '08]
- multi-dim scans (with Markov Chain Monte Carlo technique)
 [E. Baltz, P. Gondolo '04] [R. Ruiz de Austri, R. Trotta and L. Roszkowski '06, '07]
 [B. Allanach, C. Lester and A. Weber '06, '07] [O. Buchmueller et al. '08][... others ...]
⇒ here: results using last one

2.) Fitting:
- Frequentist
 [O. Buchmueller et al. '07, '08] [S.H., X. Miao, S. Su, G. Weiglein '08]
- Bayesian
 [R. Ruiz de Austri, R. Trotta and L. Roszkowski '06, '07]
 [B. Allanach, C. Lester and A. Weber '06, '07][... others ...]
⇒ focus on Frequentist here

3.) Priors ... (none)
\(\chi^2 \) calculation:

→ global \(\chi^2 \) likelihood function combines all theoretical predictions with experimental constraints:

\[
\chi^2 = \sum_i^N \frac{(C_i - P_i)^2}{\sigma(C_i)^2 + \sigma(P_i)^2} + \sum_i^M \frac{(f_{\text{obs}}^{\text{SM}_i} - f_{\text{fit}}^{\text{SM}_i})^2}{\sigma(f_{\text{SM}_i})^2}
\]

- \(N \): number of observables studied
- \(M \): SM parameters: \(\Delta \alpha_{\text{had}}, m_t, M_Z \)
- \(C_i \): experimentally measured value (constraint)
- \(P_i \): MSSM parameter-dependent prediction for the corresponding constraint
\(\chi^2 \) calculation:

→ global \(\chi^2 \) likelihood function
combines all theoretical predictions with experimental constraints:

\[
\chi^2 = \sum_{i}^{N} \frac{(C_i - P_i)^2}{\sigma(C_i)^2 + \sigma(P_i)^2} + \sum_{i}^{M} \frac{(f_{\text{obs}}^{SM_i} - f_{\text{fit}}^{SM_i})^2}{\sigma(f_{SM_i})^2}
\]

- \(N \): number of observables studied
- \(M \): SM parameters: \(\Delta \alpha_{\text{had}}, m_t, M_Z \)
- \(C_i \): experimentally measured value (constraint)
- \(P_i \): MSSM parameter-dependent prediction for the corresponding constraint

What to do if only a lower/upper bound exists?

→ especially important: \(M_h \)
SM Higgs search at LEP:

Dominant SM production process:
\(e^+ e^- \rightarrow ZH \):

Dominant decay process:
\(H \rightarrow b\bar{b} \):

Bounds valid in the CMSSM? NUHM1? MSSM?
Search for neutral SUSY Higgs bosons:

\[e^+ e^- \rightarrow Z h, Z H \]

\[\sigma_{hZ} \approx \sin^2(\beta - \alpha_{\text{eff}}) \sigma_{hZ}^{\text{SM}} \]

\[\sigma_{HZ} \approx \cos^2(\beta - \alpha_{\text{eff}}) \sigma_{hZ}^{\text{SM}} \]

\[e^+ e^- \rightarrow A h, A H \]

\[\sigma_{hA} \propto \cos^2(\beta - \alpha_{\text{eff}}) \sigma_{hZ}^{\text{SM}} \]

\[\sigma_{HA} \propto \sin^2(\beta - \alpha_{\text{eff}}) \sigma_{hZ}^{\text{SM}} \]
Constraints from the Higgs search at LEP [LEP Higgs Working Group '06]

Experimental search vs. upper M_h-bound (FeynHiggs 2.0)

m_h^{max}-scenario ($m_t = 174.3$ GeV, $M_{\text{SUSY}} = 1$ TeV):

$m_h > 92.8$ GeV
(expected: 94.9 GeV), 95% C.L.

$M_A > 93.4$ GeV
(expected: 95.2 GeV)
\[\sin^2(\beta - \alpha_{\text{eff}}) \] in the CMSSM, NUHM1:

![CMSSM and NUHM1 comparison](image-url)
In CMSSM:
SM bound of M_H search can be used [LEP Higgs Working Group '03]

CL_s can be used/transferred into χ^2 values

\Rightarrow can be included into χ^2 evaluation

$\delta M_{h}^{\text{intr.}} \approx 3 \text{ GeV}$

We use FeynHiggs
In CMSSM:
SM bound of M_H search can be used [LEP Higgs Working Group '03]

CL_s can be used/transformed into χ^2 values

Interested in MSSM Higgs physics? Try our code FeynHiggs
www.feynhiggs.de

$\delta M_h^{\text{intr}} \approx 3$ GeV

We use FeynHiggs
In the NUHM1:
SM bound on M_H is reduced: $S_{95} \sim \sin^2(\beta - \alpha_{\text{eff}})$

\Rightarrow take into account the LEP SM Higgs bound . . .

. . . but shifted according to the reduced coupling

Sven Heinemeyer, BSM/LHC '09 (pre-SUSY 09), 06/03/2009
4. Predictions for the LHC

- combine all electroweak precision data as in the SM
- combine with B physics observables
- combine with CDM and $(g - 2)_\mu$
- include SM parameters with their errors: $m_t, M_Z, \Delta \alpha_{\text{had}}$

$\Rightarrow \chi^2$ function

\rightarrow scan over the full CMSSM/NUHM1 parameter space

$\sim 2.5 \times 10^7$ points samples with MCMC

statistical measure: χ^2 function (Frequentist, no priors)

\rightarrow final minimum: Minuit

$\Delta \chi^2$: 68, 95% C.L. contours

\Rightarrow preferred CMSSM/NUHM1 parameters

\Rightarrow LHC/ILC reach

\rightarrow not yet existing results in Henning Flächer’s talk at SUSY 09
Best-fit points:

CMSSM:

\[m_{1/2} = 310 \text{ GeV}, \quad m_0 = 60 \text{ GeV}, \quad A_0 = 240 \text{ GeV}, \]
\[\tan \beta = 11, \quad \mu = 380 \text{ GeV}, \quad M_A = 410 \text{ GeV} \]

\[\chi^2/N_{\text{dof}} = 20.4/19 \ (37.3 \ % \ \text{probability}) \]

⇒ very similar to SPS 1a :-)

NUHM1:

\[m_{1/2} = 240 \text{ GeV}, \quad m_0 = 100 \text{ GeV}, \quad A_0 = -930 \text{ GeV}, \]
\[\tan \beta = 7, \quad \mu = 870 \text{ GeV}, \quad M_A = 300 \text{ GeV} \]

(39 % probability)
LHC (CMS) reach with 1 fb$^{-1}$:

\[\tan \beta = 10, \ A_0 = 0, \ \mu > 0 \]

- jets + MET (CMS)
- 0 lepton + 4 jets (ATLAS)
- 1 lepton + 4 jets (ATLAS)
- SS 2μ (CMS)
- Higgs (2/fb) (CMS)

⇒ excellent prospects in various channels!

Sven Heinemeyer, BSM/LHC '09 (pre-SUSY 09), 06/03/2009
LHC (CMS):

\[\text{MasterCode '08}\][\text{CMS '07}]

⇒ excellent prospects even with lower luminosity!

\(\tan\beta = 10, A_0 = 0, \mu > 0\)

- 1/fb @ 14 TeV
- 100/pb @ 14 TeV
- 50/pb @ 10 TeV

jets + MET (CMS)

Sven Heinemeyer, BSM/LHC '09 (pre-SUSY 09), 06/03/2009
LHC (CMS) reach with 1 fb$^{-1}$: NUHM1 analysis

$\tan \beta = 10$, $A_0 = 0$, $\mu > 0$

- jets + MET (CMS)
- 0 lepton + 4 jets (ATLAS)
- 1 lepton + 4 jets (ATLAS)
- SS 2μ (CMS)
- Higgs (2/fb) (CMS)

τ_1 LSP

$m_{1/2}$ [GeV]

1/fb

\Rightarrow excellent prospects in various channels!

Sven Heinemeyer, BSM/LHC '09 (pre-SUSY 09), 06/03/2009
LHC (CMS): NUHM1 analysis

$\tan\beta = 10$, $A_0 = 0$, $\mu > 0$

$1/\text{fb} @ 14 \text{ TeV}$
$100/\text{pb} @ 14 \text{ TeV}$
$50/\text{pb} @ 10 \text{ TeV}$

$\tilde{\tau}_1 \text{ LSP}$

\Rightarrow excellent prospects even with lower luminosity!
Masses for best-fit points:

\[
\begin{array}{c}
\text{CMSSM} \\
\end{array}
\]

\[
\begin{array}{c}
\text{NUHM1} \\
\end{array}
\]

⇒ largely accessible spectrum for LHC and ILC

Sven Heinemeyer, BSM/LHC ’09 (pre-SUSY 09), 06/03/2009
LHC (CMS) reach with 1 fb$^{-1}$:

CMSSM analysis incl. leptonic edge measurements

⇒ excellent prospects from early leptonic edge measurements!
Impact of various constraints (CMSSM):

\[(m_0, m_{1/2}) \]

\[\Rightarrow \text{strong impact of } (g-2)_\mu \]

\[\Rightarrow \text{strong improvement possible from } M_W, \text{BR}(b \rightarrow s\gamma), (g-2)_\mu, \text{BR}(B_u \rightarrow \tau\nu) \]
Impact of various constraints (CMSSM):

$\Delta (g-2)$

-strong impact of $(g-2)_\mu$

-strong improvement possible from M_W, $\text{BR}(b \rightarrow s\gamma)$, $(g-2)_\mu$, $\text{BR}(B_u \rightarrow \tau\nu)$
Predictions for $\text{BR}(B_s \to \mu^+\mu^-)$:

CMSSM:

\Rightarrow similar to SM

\Rightarrow accessible at LHCb
Predictions for $\text{BR}(B_s \rightarrow \mu^+\mu^-)$:

NUHM1:

\Rightarrow much larger than in the CMSSM possible

\Rightarrow accessible at the Tevatron(?) / LHCb
Prediction for M_h:

(LEP bounds not included!)

CMSSM:

⇒ LEP bound relatively easily avoided
Prediction for M_h:

(LEP bounds not included!)

NUHM1:

$\Rightarrow M_h > 114.4 \text{ GeV}$ appears naturally
5. Conclusions

- **Idea**: Predict most probable MSSM parameter regions using existing data: EWPO, BPO, CDM, ...
- **Models**: CMSSM, NUHM1
- **statistical measure**: χ^2 function (Frequentist, no priors)
 $\sim 2.5 \times 10^7$ points samples with MCMC
 $\Delta\chi^2$: 68, 95% C.L. contours
- **Best-fit points**:
 CMSSM: $m_{1/2} = 310$ GeV, $m_0 = 60$ GeV, $A_0 = 240$ GeV,
 $\tan \beta = 11$, $\mu = 380$ GeV, $M_A = 410$ GeV
 \Rightarrow very similar to SPS 1a :-)
 Prediction of M_h (no LEP bound): $M_h = 109 \pm 6 \pm 3$ GeV (prelim.!)
 NUHM1: $m_{1/2} = 240$ GeV, $m_0 = 100$ GeV, $A_0 = -930$ GeV,
 $\tan \beta = 7$, $\mu = 870$ GeV, $M_A = 300$ GeV
 Prediction of M_h (no LEP bound): best fit: $M_h \approx 120$ GeV (prelim.!)
- **95% C.L. areas**: mostly covered with ~ 1 fb$^{-1}$ (u.d.!)
 \Rightarrow early LHC data could be very conclusive!
5. Conclusions

- **Idea**: Predict most probable MSSM parameter regions using existing data: EWPO, BPO, CDM, ...

- **Models**: CMSSM, NUHM1

- **statistical measure**: χ^2 function (Frequentist, no priors)
 \[\sim 2.5 \times 10^7 \] points samples with MCMC
 \[\Delta \chi^2 : 68, 95\% \text{ C.L. contours} \]

- **Best-fit points**:

 CMSSM: $m_{1/2}$, $\tan \beta$, μ, M_A

 \[\Rightarrow \text{very similar to SPS 1a} :-) \]

 Prediction of M_h (no LEP bound): best fit: $M_h \approx 120$ GeV (prelim.!)

 NUHM1: $m_{1/2} = 240$ GeV, $m_0 = 100$ GeV, $A_0 = -930$ GeV,

 $\tan \beta = 7$, $\mu = 870$ GeV, $M_A = 300$ GeV

 Prediction of M_h (no LEP bound): best fit: $M_h \approx 120$ GeV (prelim.!)

- **95\% C.L. areas**: mostly covered with ~ 1 fb$^{-1}$ (u.d.)

 \[\Rightarrow \text{early LHC data could be very conclusive!} \]