Global fits à la frequentist

F. Ronga (ETH Zurich)
Joint HEP-APP IOP meeting on SUSY
March 24 2010
Global fits à la frequentist?

- **Confronting a model to data**
 - combine measurements
 - compare with predictions
 - constrain the parameters
 - or exclude the model...

- **Key ingredients**
 - consistent set of measurements
 - and their errors
 - state-of-the-art predictions
 - and their errors
 - and a combination of the two
Global fits à la frequentist?

- Confronting a model to data
 - combine measurements
 - compare with predictions
 - constrain the parameters
 - or exclude the model...

- Key ingredients
 - consistent set of measurements
 - and their errors
 - state-of-the-art predictions
 - and their errors
 - and a combination of the two

Famous examples of global fits
Global fits à la frequentist?

- Confronting a model to data
 - combine measurements
 - compare with predictions
 - constrain the parameters
 - or exclude the model...

- Key ingredients
 - consistent set of measurements
 - and their errors
 - state-of-the-art predictions
 - and their errors
 - and a combination of the two

Famous examples of global fits
Global fits à la frequentist?

• Confronting a model to data
 ‣ combine measurements
 ‣ compare with predictions
 ‣ constrain the parameters
 ■ or exclude the model...

• Key ingredients
 ‣ consistent set of measurements
 ■ and their errors
 ‣ state-of-the-art predictions
 ■ and their errors
 ‣ and a combination of the two

Famous examples of global fits
à la frequentist
Global fits à la...: framework

- **Consistency**
 - SLHA interface

- **Modularity**
 - Compare calculations
 - Add/remove predictions

- **State-of-the-art “tools”**
 - Directly from experts

- **Flexibility**
 - Several uses
Global fits à la...: framework

• Consistency
 ‣ SLHA interface

• Modularity
 ‣ Compare calculations
 ‣ Add/remove predictions

• State-of-the-art “tools”
 ‣ Directly from experts

• Flexibility
 ‣ Several uses
 • \(\chi^2 \Rightarrow \) Minuit fit, MCMC
Global fits à la...: framework

- **Consistency**
 - SLHA interface

- **Modularity**
 - Compare calculations
 - Add/remove predictions

- **State-of-the-art “tools”**
 - Directly from experts

- **Flexibility**
 - Several uses
 - $\chi^2 \Rightarrow$ Minuit fit, MCMC
 - input to external tool
Building the χ^2

$$\chi^2 = \sum_{i}^{N} \frac{(C_i - P_i)^2}{\sigma(C_i)^2 + \sigma(P_i)^2} + \sum_{j}^{M} \frac{(f_{\text{obs}}^\text{SM}_j - f_{\text{fit}}^\text{SM}_j)^2}{\sigma(f_{\text{SM}_j})^2}$$

- **Multi-parameter χ^2 variable**
 - C_i – experimental constraints
 - P_i – predicted value for a given CMSSM parameter set
- **Fitting for all model parameters, e.g., CMSSM**
 - M_0, $M_{1/2}$, A_0, $\tan\beta$ ($\text{sign}(\mu) = 1$)
- **Including relevant SM uncertainties**
 - m_{top}, m_Z, Γ_Z, $\Delta\alpha_{\text{had}}$
List of observables

Low energy observables
- $R(b \rightarrow s\gamma)$: SuFla*
- $R(B \rightarrow \tau\nu)$: SuFla
- $BR(K \rightarrow \tau\nu)$: SuFla
- $R(B \rightarrow X_s\ell\ell)$: SuFla
- $R(K \rightarrow \pi\nu\bar{\nu})$: SuFla
- $BR(B_s \rightarrow \ell\ell)$: SuFla
- $BR(B_d \rightarrow \ell\ell)$: SuFla
- $R(\Delta m_s)$: SuFla
- $R(\Delta m_s)/R(\Delta m_d)$: SuFla
- $R(\Delta m_K)$: SuFla
- $R(\Delta_0(K^*\gamma))$: SuperIso
- $\Delta(g - 2)$: FeynHiggs

Electroweak observables
- $\Delta \alpha_{\text{had}}^{(5)}(m_Z^2)$: FeynWZ
- m_Z: FeynWZ
- σ_{had}^0: FeynWZ
- R_l: FeynWZ
- $A_{fb}(\ell)$: FeynWZ
- $A_{\ell}(P_\tau)$: FeynWZ
- R_b: FeynWZ
- R_c: FeynWZ
- $A_{fb}(b)$: FeynWZ
- $A_{fb}(c)$: FeynWZ
- A_b: FeynWZ
- A_c: FeynWZ
- $A_{\ell}(\text{SLD})$: FeynWZ
- $\sin^2 \theta_w^\ell(Q_{fb})$: FeynWZ
- m_W: FeynWZ
- m_t: FeynWZ

Higgs sector observables
- m_h^{light}: FeynHiggs

Cosmology observables
- Ωh^2: DarkSUSY
- σ^S_{SI}: DarkSUSY
- σ_p: DarkSUSY

* G. Isidori, P. Paradisi
List of observables

Low energy observables
- $R(b \rightarrow s\gamma)$ SuFla* micrOMEGAs
- $R(B \rightarrow \tau\nu)$ SuFla
- $BR(K \rightarrow \tau\nu)$ SuFla
- $R(B \rightarrow X_s\ell\ell)$ SuFla
- $R(K \rightarrow \pi\nu\bar{\nu})$ SuFla
- $BR(B_s \rightarrow \ell\ell)$ SuFla micrOMEGAs
- $BR(B_d \rightarrow \ell\ell)$ SuFla
- $R(\Delta m_s)$ SuFla
- $R(\Delta m_s)/R(\Delta m_d)$ SuFla
- $R(\Delta m_K)$ SuFla
- $R(\Delta_0(K^*\gamma))$ SuperIso
- $\Delta(g-2)$ FeynHiggs

Higgs sector observables
- m_{h}^{light} FeynHiggs

Cosmology observables
- Ωh^2 DarkSUSY micrOMEGAs
- σ_{s}^{St} DarkSUSY micrOMEGAs

Electroweak observables
- $\Delta\alpha^{(5)}_{\text{had}}(m_Z^2)$ FeynWZ
- m_Z FeynWZ
- σ_{had}^0 FeynWZ
- R_{l} FeynWZ
- A_{ℓ}^{FB} FeynWZ
- $A_{\ell}(P_\tau)$ FeynWZ
- R_{c} FeynWZ
- $A_{\ell}(b)$ FeynWZ
- $A_{\ell}(c)$ FeynWZ
- A_{b} FeynWZ
- A_{c} FeynWZ
- $A_{\ell}(SLD)$ FeynWZ
- $\sin^2 \theta_{w}^{\ell}(Q_{FB})$ FeynWZ
- m_W FeynWZ
- m_t FeynWZ

* G. Isidori, P. Paradisi
Fit methods & “data” samples

• Fit methods
 ‣ Markov Chain Monte Carlo (MCMC)
 ■ actually used as a mere sampling method (sampling density not used)
 • success and failure of the steps are defined by the χ^2
 ‣ χ^2 fit: Minuit minimisation
 ■ used for “scans” or in conjunction with MCMCs to get the overall best minimum

• Data samples for MCMCs
 ‣ MasterCode
 ■ about 25 million points for each model (CMSSM & NUHM1)
 ‣ Fittino
 ■ about 20 million points (x2 different starting points)
 ■ “toy” fits (uncertainty on fit parameters, model disambiguation)
Probing the parameter space

MasterCode
Best fit point:
M₀=60, M₁/₂=310, A₀=130, tanβ=11

Fittino
Best fit point:
M₀=76, M₁/₂=332, A₀=383, tanβ=13

Probing the parameter space

MasterCode
Best fit point:
$M_0 = 60$, $M_{1/2} = 310$, $A_0 = 130$, $\tan\beta = 11$

Fittino
Best fit point:
$M_0 = 76$, $M_{1/2} = 332$, $A_0 = 383$, $\tan\beta = 13$

Higgs funnel!

$2 \times m_{\tilde{\chi}_0} \lesssim M_h$

F. Ronga (ETH Zurich) – Joint HEP-APP IOP meeting on SUSY – March 24, 2010
Probing the parameter space

MasterCode
Best fit point:
M₀=60, M₁/₂=310, A₀=130, tanβ=11

Higgs funnel!

2 × mₐ₀ ≲ Mₜ

Fittino
Best fit point:
M₀=76, M₁/₂=332, A₀=383, tanβ=13

The predicted spectrum

MasterCode
CMSSM spectrum at best fit point

Fittino
CMSSM spectrum at best fit point

The predicted spectrum

MasterCode
CMSSM spectrum at best fit point

F. Ronga (ETH Zurich) – Joint HEP-APP IOP meeting on SUSY – March 24, 2010
The predicted spectrum

MasterCode
CMSSM spectrum at best fit point

Fittino
CMSSM spectrum at best fit point

Present data favours low mass SUSY
The key players

- Percent change of 95% C.L. contour area as a function of relative uncertainty
 - In general, parameter space weakly constrained
 - g-2 still the strongest constraint

Predicting the Higgs mass

- *Not including the LEP limit*, what does the CMSSM predict with today's data?

CMSSM

- Higgs mass at best fit point: 108 GeV
- χ^2 value at limit: 0.7
Predicting the Higgs mass

• Not including the LEP limit, what does the CMSSM predict with today’s data?

CMSSM
Higgs mass at best fit point: 108 GeV
χ^2 value at limit: 0.7

Standard Model
Higgs mass at best fit point: 87 GeV
χ^2 value at limit: 0.9

Latest Tevatron limit not included yet
Beyond CMSSM: NUHM I

- Non-Universal Higgs Mass: adding one parameter for the Higgs sector (not bound to M_0 anymore)

CMSSM

Higgs mass at best fit point: 108 GeV

χ^2 value at limit: 0.7
Beyond CMSSM: NUHM1

- Non-Universal Higgs Mass: adding one parameter for the Higgs sector (not bound to M_0 anymore)

Higgs mass at best fit point: 108 GeV
χ^2 value at limit: 0.7

Higgs mass at best fit point: 120 GeV
χ^2 value at limit: N/A

Beyond CMSSM: NUHM1

- Non-Universal Higgs Mass: adding one parameter for the Higgs sector

Beyond CMSSM: NUHM1

- Non-Universal Higgs Mass: adding one parameter for the Higgs sector

Also low mass SUSY!
Beyond CMSSM: GMSB

- Gauge-mediated SUSY breaking
 - fit parameters: $\tan \beta$, Λ, M_{mess}, C_{grav}
 - discrete parameters: $\text{sign}(\mu)$, N_5 (fixed) [no Ωh^2]

... (Graphs showing $\tan \beta$ vs. Λ, 68% and 95% CL contours, $N_5 = 1, \ldots, 4$)

GMSB mass spectrum
 - $N_5 = 1$
 - similar to CMSSM

Global fits and astrophysics (I)

- With and without relic density

![Graphs showing 95% CL contours for M0 and tanβ with and without WMAP](image)

Global fits and astrophysics (I)

• With and without relic density

F. Ronga (ETH Zurich) – Joint HEP-APP IOP meeting on SUSY – March 24, 2010
Global fits and astrophysics (II)

- Dark matter searches

Spin-independent WIMP scattering cross-section

F. Ronga (ETH Zurich) – Joint HEP-APP IOP meeting on SUSY – March 24, 2010
Global fits and astrophysics (II)

- Dark matter searches

Spin-independent WIMP scattering cross-section
Global fits and the LHC (I)

Where we stand today: CMS, ATLAS and the CMSSM

F. Ronga (ETH Zurich) – Joint HEP-APP IOP meeting on SUSY – March 24, 2010
Global fits and the LHC (II)

Dilepton edge measurement at CMS
1/fb integrated luminosity @ 14 TeV

Edge measurements at ATLAS
1/fb integrated luminosity @ 14 TeV

Tomorrow?
CMS, ATLAS and the CMSSM
Beyond CMSSM: pMSSM

• Removing assumptions on the SUSY breaking mechanism

› 18 parameters: today’s constraints not enough

› add 300/fb LHC scenario

Derived Mass Spectrum of SUSY Particles LE+LHC300 MSSM18

pMSSM mass spectrum @ SPS1a
(Higgs not directly accessible at LHC in this point)
Beyond CMSSM: pMSSM

- Removing assumptions on the SUSY breaking mechanism
 - 18 parameters: today’s constraints not enough
 - add 300/fb LHC scenario

A heroic effort!

How to reduce number of parameters?

pMSSM mass spectrum @ SPS1a
(Higgs not directly accessible at LHC in this point)
Conclusion

• Two independent global fits “à la frequentist”
 ‣ using the same substrate MasterCode and similar statistical treatment
 ■ but independent implementation
 ‣ leading to identical results

• Today’s data exploited *ad nauseam*
 ‣ in various models (CMSSM, NUHMI, GMSB)
 ‣ favour low mass SUSY
 ‣ show good prospects for astrophysics and LHC
 ‣ are still too weak to move away from SUSY breaking models

• Eagerly waiting for the LHC...
BEAM SETUP: FLAT TOP

Energy: 3500 GeV I(B1): 5.89e+09 I(B2): 4.73e+09

Comments 24-03-2010 12:07:04:
beams circulating at 3.5 TeV
B1 in bucket 1, B2 in bucket 1001
I~6e9 for both beams

Collimator studies starting at ~ 12:00

BIS status and SMP flags

<table>
<thead>
<tr>
<th>B1</th>
<th>B2</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
</tr>
</tbody>
</table>

LHC Operation in CCC: 77600, 70480
Best fit: CMSSM vs. SM

<table>
<thead>
<tr>
<th>Variable</th>
<th>Measurement</th>
<th>Fit</th>
<th>(\Omega h^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta\alpha^{(5)}) (m_Z)</td>
<td>0.02758 (\pm) 0.00035</td>
<td>0.02774</td>
<td>0.113 (\pm) 0.009</td>
</tr>
<tr>
<td>m_Z [GeV]</td>
<td>91.1875 (\pm) 0.0021</td>
<td>91.1873</td>
<td>0.113 (\pm) 0.009</td>
</tr>
<tr>
<td>(\Gamma_Z) [GeV]</td>
<td>2.4952 (\pm) 0.0023</td>
<td>2.4952</td>
<td>0.113 (\pm) 0.009</td>
</tr>
<tr>
<td>(c_{\text{had}}^b) [nb]</td>
<td>41.540 (\pm) 0.037</td>
<td>41.486</td>
<td>0.172 (\pm) 0.027</td>
</tr>
<tr>
<td>R_b</td>
<td>20.767 (\pm) 0.025</td>
<td>20.744</td>
<td>0.172 (\pm) 0.027</td>
</tr>
<tr>
<td>(A_{b}^{(4)})</td>
<td>0.1671 (\pm) 0.00095</td>
<td>0.1664</td>
<td>0.0707 (\pm) 0.0035</td>
</tr>
<tr>
<td>(A_{b}^{(1)}(P_{t}))</td>
<td>0.1465 (\pm) 0.0032</td>
<td>0.1479</td>
<td>0.923 (\pm) 0.020</td>
</tr>
<tr>
<td>(A_{b})</td>
<td>0.670 (\pm) 0.027</td>
<td>0.668</td>
<td>0.923 (\pm) 0.020</td>
</tr>
<tr>
<td>(A_{c})</td>
<td>0.1513 (\pm) 0.0021</td>
<td>0.1479</td>
<td>0.670 (\pm) 0.027</td>
</tr>
<tr>
<td>(\sin^2\theta_{\text{eff}}(Q_{b}))</td>
<td>0.2324 (\pm) 0.0012</td>
<td>0.2314</td>
<td>0.670 (\pm) 0.027</td>
</tr>
<tr>
<td>m_W [GeV]</td>
<td>80.398 (\pm) 0.025</td>
<td>80.382</td>
<td>0.1513 (\pm) 0.0021</td>
</tr>
<tr>
<td>m_t [GeV]</td>
<td>170.9 (\pm) 1.8</td>
<td>170.8</td>
<td>2.140 (\pm) 0.060</td>
</tr>
<tr>
<td>R(b(\rightarrow)s(\gamma))</td>
<td>1.13 (\pm) 0.12</td>
<td>1.12</td>
<td>0.967 (\pm) 0.03</td>
</tr>
<tr>
<td>B_s(\rightarrow)\mu(\mu) ([\times 10^{-8}])</td>
<td>< 8.00</td>
<td>0.33</td>
<td>N/A (upper limit)</td>
</tr>
<tr>
<td>(\Delta\alpha_{\mu} \times 10^{9})</td>
<td>2.95 (\pm) 0.87</td>
<td>2.95</td>
<td>0.670 (\pm) 0.027</td>
</tr>
<tr>
<td>(\Omega h^2)</td>
<td>0.113 (\pm) 0.009</td>
<td>0.113</td>
<td>0.113 (\pm) 0.009</td>
</tr>
</tbody>
</table>

Standard Model

<table>
<thead>
<tr>
<th>Variable</th>
<th>Measurement</th>
<th>Fit</th>
<th>(\Omega h^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta\alpha^{(5)}) (m_Z)</td>
<td>0.02758 (\pm) 0.00035</td>
<td>0.02774</td>
<td>0.113 (\pm) 0.009</td>
</tr>
<tr>
<td>m_Z [GeV]</td>
<td>91.1875 (\pm) 0.0021</td>
<td>91.1873</td>
<td>0.113 (\pm) 0.009</td>
</tr>
<tr>
<td>(\Gamma_Z) [GeV]</td>
<td>2.4952 (\pm) 0.0023</td>
<td>2.4952</td>
<td>0.113 (\pm) 0.009</td>
</tr>
<tr>
<td>(c_{\text{had}}^b) [nb]</td>
<td>41.540 (\pm) 0.037</td>
<td>41.486</td>
<td>0.172 (\pm) 0.027</td>
</tr>
<tr>
<td>R_b</td>
<td>20.767 (\pm) 0.025</td>
<td>20.744</td>
<td>0.172 (\pm) 0.027</td>
</tr>
<tr>
<td>(A_{b}^{(4)})</td>
<td>0.1671 (\pm) 0.00095</td>
<td>0.1664</td>
<td>0.0707 (\pm) 0.0035</td>
</tr>
<tr>
<td>(A_{b}^{(1)}(P_{t}))</td>
<td>0.1465 (\pm) 0.0032</td>
<td>0.1479</td>
<td>0.923 (\pm) 0.020</td>
</tr>
<tr>
<td>(A_{b})</td>
<td>0.670 (\pm) 0.027</td>
<td>0.668</td>
<td>0.923 (\pm) 0.020</td>
</tr>
<tr>
<td>(A_{c})</td>
<td>0.1513 (\pm) 0.0021</td>
<td>0.1479</td>
<td>0.670 (\pm) 0.027</td>
</tr>
<tr>
<td>(\sin^2\theta_{\text{eff}}(Q_{b}))</td>
<td>0.2324 (\pm) 0.0012</td>
<td>0.2314</td>
<td>0.670 (\pm) 0.027</td>
</tr>
<tr>
<td>m_W [GeV]</td>
<td>80.398 (\pm) 0.025</td>
<td>80.382</td>
<td>0.1513 (\pm) 0.0021</td>
</tr>
<tr>
<td>m_t [GeV]</td>
<td>170.9 (\pm) 1.8</td>
<td>170.8</td>
<td>2.140 (\pm) 0.060</td>
</tr>
<tr>
<td>R(b(\rightarrow)s(\gamma))</td>
<td>1.13 (\pm) 0.12</td>
<td>1.12</td>
<td>0.967 (\pm) 0.03</td>
</tr>
<tr>
<td>B_s(\rightarrow)\mu(\mu) ([\times 10^{-8}])</td>
<td>< 8.00</td>
<td>0.33</td>
<td>N/A (upper limit)</td>
</tr>
<tr>
<td>(\Delta\alpha_{\mu} \times 10^{9})</td>
<td>2.95 (\pm) 0.87</td>
<td>2.95</td>
<td>0.670 (\pm) 0.027</td>
</tr>
<tr>
<td>(\Omega h^2)</td>
<td>0.113 (\pm) 0.009</td>
<td>0.113</td>
<td>0.113 (\pm) 0.009</td>
</tr>
</tbody>
</table>
Constraints (I)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>m_t [GeV]</td>
<td>[68,69]</td>
<td>[70]</td>
<td>173.1 ± 1.3</td>
<td>–</td>
</tr>
<tr>
<td>$\Delta\alpha_{\text{had}}^{(5)}(m_Z)$</td>
<td>[68,69]</td>
<td>[71]</td>
<td>0.02758 ± 0.00035</td>
<td>–</td>
</tr>
<tr>
<td>M_Z [GeV]</td>
<td>[68,69]</td>
<td>[71]</td>
<td>91.1875 ± 0.0021</td>
<td>–</td>
</tr>
<tr>
<td>Γ_Z [GeV]</td>
<td>[68,69]</td>
<td>[71]</td>
<td>2.4952 ± 0.0023</td>
<td>0.001</td>
</tr>
<tr>
<td>σ_0^{had} [nb]</td>
<td>[68,69]</td>
<td>[71]</td>
<td>41.540 ± 0.037</td>
<td>–</td>
</tr>
<tr>
<td>R_t</td>
<td>[68,69]</td>
<td>[71]</td>
<td>20.767 ± 0.025</td>
<td>–</td>
</tr>
<tr>
<td>$A_{B_d}(\ell)$</td>
<td>[68,69]</td>
<td>[71]</td>
<td>0.01714 ± 0.00095</td>
<td>–</td>
</tr>
<tr>
<td>$A_t(P_c)$</td>
<td>[68,69]</td>
<td>[71]</td>
<td>0.1465 ± 0.0032</td>
<td>–</td>
</tr>
<tr>
<td>R_b</td>
<td>[68,69]</td>
<td>[71]</td>
<td>0.21629 ± 0.00066</td>
<td>–</td>
</tr>
<tr>
<td>R_c</td>
<td>[68,69]</td>
<td>[71]</td>
<td>0.1721 ± 0.003</td>
<td>–</td>
</tr>
<tr>
<td>$A_{B_d}(b)$</td>
<td>[68,69]</td>
<td>[71]</td>
<td>0.0992 ± 0.0016</td>
<td>–</td>
</tr>
<tr>
<td>$A_{B_s}(c)$</td>
<td>[68,69]</td>
<td>[71]</td>
<td>0.0707 ± 0.0035</td>
<td>–</td>
</tr>
<tr>
<td>A_{B_s}</td>
<td>[68,69]</td>
<td>[71]</td>
<td>0.923 ± 0.020</td>
<td>–</td>
</tr>
<tr>
<td>A_{K_s}</td>
<td>[68,69]</td>
<td>[71]</td>
<td>0.670 ± 0.027</td>
<td>–</td>
</tr>
<tr>
<td>A_{K_L}</td>
<td>[68,69]</td>
<td>[71]</td>
<td>0.1513 ± 0.0021</td>
<td>–</td>
</tr>
<tr>
<td>$\sin^2\theta_W(Q_{th})$</td>
<td>[68,69]</td>
<td>[71]</td>
<td>0.2324 ± 0.0012</td>
<td>–</td>
</tr>
<tr>
<td>M_W [GeV]</td>
<td>[68,69]</td>
<td>[72,73]</td>
<td>80.399 ± 0.025</td>
<td>0.010</td>
</tr>
</tbody>
</table>

BR$_{b \rightarrow s\gamma}$/BR$_{b \rightarrow s\gamma}^{SM}$	[74–78]	[79]	1.117 ± 0.076$_{\text{exp}}$ ± 0.082$_{\text{th(SM)}}$	0.050
BR($B_s \rightarrow \mu^+\mu^-$)	[80–83]	[79]	< 4.7 × 10$^{-8}$	–
BR$_{B_d \rightarrow \tau\nu}$/BR$_{B_d \rightarrow \tau\nu}^{SM}$	[82–84]	[85–87]	1.25 ± 0.40$_{\text{exp+th}}$	–
BR($B_d \rightarrow \mu^+\mu^-$)	[80–83]	[79]	< 2.3 × 10$^{-8}$	0.01 × 10$^{-8}$
BR$_{BR_{K_L \rightarrow \pi\nu				
u}}$/BR$_{K_L \rightarrow \pi\nu				
u}^{SM}$	[82,84]	[90]	1.008 ± 0.014$_{\text{exp+th}}$	–
BR$_{BR_{K_L \rightarrow \pi\nu				
u}}$/BR$_{K_L \rightarrow \pi\nu				
u}^{SM}$	[91]	[92]	< 4.5	–
$\Delta M_{B_s}^{\text{exp}}/\Delta M_{B_s}^{\text{SM}}$	[91]	[93,94]	0.97 ± 0.01$_{\text{exp}}$ ± 0.27$_{\text{th(SM)}}$	–
$\Delta M_{B_d}^{\text{exp}}/\Delta M_{B_d}^{\text{SM}}$	[80–83]	[79,93,94]	1.00 ± 0.01$_{\text{exp}}$ ± 0.13$_{\text{th(SM)}}$	–
$\alpha^{\text{exp}}_{\mu} - \alpha^{\text{SM}}_{\mu}$	[95–98]	[99–101]	(30.2 ± 8.8) × 10$^{-10}$	2.0 × 10$^{-10}$
M_{h} [GeV]	[102–105]	[106,107]	> 114.4 (see text)	1.5
$\Omega_{\text{CDM}}h^2$	[108–110]	[111]	0.1099 ± 0.0062	0.012
Constraints (II)

<table>
<thead>
<tr>
<th>Observable</th>
<th>Experimental Value</th>
<th>Uncertainty</th>
<th>Exp. Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{B}(B \rightarrow s\gamma)/\mathcal{B}(B \rightarrow s\gamma)_{\text{SM}}$</td>
<td>1.117</td>
<td>0.076</td>
<td>47</td>
</tr>
<tr>
<td>$\mathcal{B}(B_s \rightarrow \mu\mu)$</td>
<td>< 4.7\times10$^{-8}$</td>
<td></td>
<td>47</td>
</tr>
<tr>
<td>$\mathcal{B}(B_d \rightarrow \ell\ell)$</td>
<td>< 2.3\times10$^{-8}$</td>
<td></td>
<td>47</td>
</tr>
<tr>
<td>$\mathcal{B}(B \rightarrow \tau\nu)/\mathcal{B}(B \rightarrow \tau\nu)_{\text{SM}}$</td>
<td>1.15</td>
<td>0.40</td>
<td>48</td>
</tr>
<tr>
<td>$\mathcal{B}(B_s \rightarrow X_s\ell\ell)/\mathcal{B}(B_s \rightarrow X_s\ell\ell)_{\text{SM}}$</td>
<td>0.99</td>
<td>0.32</td>
<td>47</td>
</tr>
<tr>
<td>$\Delta m_{B_s}/\Delta m_{B_s}^{\text{SM}}$</td>
<td>1.11</td>
<td>0.01</td>
<td>49</td>
</tr>
<tr>
<td>$\Delta m_{B_d}/\Delta m_{B_d}^{\text{SM}}$</td>
<td>1.09</td>
<td>0.01</td>
<td>47</td>
</tr>
<tr>
<td>$\Delta \epsilon_K/\Delta \epsilon_K^{\text{SM}}$</td>
<td>0.92</td>
<td>0.14</td>
<td>49</td>
</tr>
<tr>
<td>$\mathcal{B}(K \rightarrow \mu\nu)/\mathcal{B}(K \rightarrow \mu\nu)_{\text{SM}}$</td>
<td>1.008</td>
<td>0.014</td>
<td>50</td>
</tr>
<tr>
<td>$\mathcal{B}(K \rightarrow \pi\nu\nu)/\mathcal{B}(K \rightarrow \pi\nu\nu)_{\text{SM}}$</td>
<td>< 4.5</td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>$a_\mu^{\text{exp}} - a_\mu^{\text{SM}}$</td>
<td>30.2\times10$^{-10}$</td>
<td>8.8\times10$^{-10}$</td>
<td>[52,53]</td>
</tr>
<tr>
<td>$\sin^2 \theta_{\text{eff}}$</td>
<td>0.2324</td>
<td>0.0012</td>
<td>46</td>
</tr>
<tr>
<td>Γ_Z</td>
<td>2.4952 GeV</td>
<td>0.0023 GeV</td>
<td>46</td>
</tr>
<tr>
<td>Γ_W</td>
<td>9.14</td>
<td>0.025</td>
<td>46</td>
</tr>
<tr>
<td>Γ_h</td>
<td>0.021629</td>
<td>0.00066</td>
<td>46</td>
</tr>
<tr>
<td>Γ_c</td>
<td>0.1721</td>
<td>0.003</td>
<td>46</td>
</tr>
<tr>
<td>$\Gamma_b(b)$</td>
<td>0.0992</td>
<td>0.0016</td>
<td>46</td>
</tr>
<tr>
<td>$\Gamma_b(c)$</td>
<td>0.0707</td>
<td>0.0035</td>
<td>46</td>
</tr>
<tr>
<td>$\Gamma_b(s)$</td>
<td>0.923</td>
<td>0.020</td>
<td>46</td>
</tr>
<tr>
<td>Γ_a</td>
<td>0.670</td>
<td>0.027</td>
<td>46</td>
</tr>
<tr>
<td>Γ_t</td>
<td>0.1513</td>
<td>0.0021</td>
<td>46</td>
</tr>
<tr>
<td>Γ_r</td>
<td>0.1465</td>
<td>0.0032</td>
<td>46</td>
</tr>
<tr>
<td>$\Gamma_b(l)$</td>
<td>0.01714</td>
<td>0.00095</td>
<td>46</td>
</tr>
<tr>
<td>σ_{had}</td>
<td>41.640 nb</td>
<td>0.037 nb</td>
<td>46</td>
</tr>
<tr>
<td>m_h</td>
<td>> 114.4 GeV</td>
<td>3.0 GeV</td>
<td>[54,55,56]</td>
</tr>
<tr>
<td>$\Omega_{\text{CDM}}h^2$</td>
<td>0.1099</td>
<td>0.0062</td>
<td>57</td>
</tr>
<tr>
<td>$1/\alpha_{\text{em}}$</td>
<td>127.925</td>
<td>0.016</td>
<td>58</td>
</tr>
<tr>
<td>G_F</td>
<td>1.16637\times10$^{-5}$ GeV$^{-2}$</td>
<td>0.00001\times10$^{-5}$ GeV$^{-2}$</td>
<td>58</td>
</tr>
<tr>
<td>α_s</td>
<td>0.1176</td>
<td>0.0020</td>
<td>58</td>
</tr>
<tr>
<td>m_Z</td>
<td>91.1875 GeV</td>
<td>0.0021 GeV</td>
<td>46</td>
</tr>
<tr>
<td>m_W</td>
<td>80.399 GeV</td>
<td>0.025 GeV</td>
<td>58</td>
</tr>
<tr>
<td>m_t</td>
<td>4.20 GeV</td>
<td>0.17 GeV</td>
<td>58</td>
</tr>
<tr>
<td>m_t</td>
<td>172.4 GeV</td>
<td>1.2 GeV</td>
<td>59</td>
</tr>
<tr>
<td>m_C</td>
<td>1.77684 GeV</td>
<td>0.00017 GeV</td>
<td>58</td>
</tr>
<tr>
<td>m_c</td>
<td>1.27 GeV</td>
<td>0.11 GeV</td>
<td>46</td>
</tr>
</tbody>
</table>
Mass spectra (I)

CMSSM

NUHM1
Mass spectra (II)

Predicted Mass Spectrum of SUSY Particles LE mSUGRA

Predicted Mass Spectrum of SUSY Particles LE no h^2 GMSB N2=1

Derived Mass Spectrum of SUSY Particles mSUGRA LE+LHC 1 fb^{-1}

Derived Mass Spectrum of SUSY Particles LE+LHC300 MSSM18

F. Ronga (ETH Zurich) – Joint HEP-APP IOP meeting on SUSY – March 24, 2010